Observational constraints on photoevaporation by the central star

Gregory J. Herczeg (Caltech) Collaborator In Ti observations: Lynne Hillenbrand Joan Najita Inaria Pascucci 15 [Ne II] 12.81µm

Spitzer/IRS detections of [Ne II] 12.8µm

[Ne III] from one source

See also poster VI.2, Flaccomio

Gemini North/MICHELLE [Ne II] emission from TW Hya

- R~26,000 at 12.81µm
- 40 minute exposure
- Flux: 6 x 10⁻¹⁴ erg cm⁻² s⁻¹
 10⁻⁹ M_o if completely ionized
- FWHM = 21 + -4 km/s
- Line center -2 +/- 3 km/s
- Unresolved to 0.75 arcsec

(Herczeg et al. submitted)

Likely a direct tracer of disk ionization (at least for TW Hya-like CTTSs)

Excitation of [Ne II] emission

• Ionization of Ne:

- EUV (<575 A)
- K-shell ionization by X-rays with >0.9 keV (Glassgold et al. 2007)
 - Predicted fluxes similar to the observed fluxes
 - Predicts [Ne III]/[Ne II] flux for Sz 102
- Line broadening (21 km/s)
 - Keplerian rotation: 0.3 AU (X-ray)
 - Photoevaporative flow (EUV)
 - Turbulence in 10⁴ K gas
 - Might also lead to some evaporation
 - Temperature may require EUV radiation

The role of photoevaporation in disk dispersal (see review by Dullemond et al. 2007)

• EUV (<912 A):

- 1 to 10 AU

- M_{wind} =4x10⁻¹⁰ (ϕ_{41})^{0.5} (M/M_o)^{0.5}
 - ϕ_{41} = photons s⁻¹ at <912 A
 - Hollenbach et al. (1994)
- Alexander et al. models
 - $\phi = 10^{42}$ phot s⁻¹
 - Chromospheric EUV photons
 - Accretion continuum emission does not escape accretion flow
- FUV (912-2000 A):
 - Beyond 30 AU
 - Central star or IS field?

Alexander et al. 2006

Accretion: FUV and X-rays

• FUV: Broad redshifted emission profiles in hot lines

(Johns-Krull & Herczeg 2007)

- X-rays: weak f/i ratio in Helike triplets
 - Accretion, regardless of whether the line is suppressed by high density or a strong FUV field
 - (Kastner et al. 2002; Stelzer et al. 2004)

EUV irradiation of disk

- EUV estimate from accretion following Alexander et al. (2005)
- Coronal estimate based on estimate for nearby young stars (del Zanna et al. 2002; Ribas et al. 2005)
- But do accretion and/or winds smother the EUV emission?

Are X-rays from CTTSs smothered?

- First proposed by Gahm (1981) and Walter & Kuhi (1981) to explain Einstein data
 - IR excess: circumstellar envelope
- Possible rotational modulation of N(H) to AA Tau
 - Schmitt & Robrade 2007 and poster by Grosso
- Accretion models by Gregory et al. (2007, also talk)
- Poster II.6, Guenther & Schmitt finds large N(H I) to X-rays relative to N(H I) from A_V

Walter & Kuhi (1981)

H I absorption to CTTSs

- Wind, ISM: will attenuate emission from coronae, accretion
- Accretion flow: could attenuate accretion EUV, coronal EUV, or neither
 - Geometry- and model-dependent
- Measurements:
 - X-rays: Lyman continuum absorption
 - FUV: Absorption in Lyman lines

N(H I) measurements to TW Hya

- N(H I) to X-ray emission from Robrade & Schmitt (2006, left)
 - TW Hya in red

- N(H I) to Ly α emission
 - HST/STIS E140M spectra
 - Includes wind and ISM
 - log N(H₂)<18 from FUSE spectrum of TW Hya
 (Herczeg et al. 2004)

Comparing N(H I) measurements

• Uncertainties:

- Formation of H I Ly- α emission
- Variability in N(H I)?
 - FUV: FUSE and STIS observations at different epochs
 - X-rays: N(H I) consistent with ROSAT (Kastner et al. 1999) and Chandra/LETGS spectrum of TW Hya
- Geometry: N(H I) may depend on viewing angle
- Two other comparisons SU Aur, BP Tau
 - log N(H I) from FUV (Lamzin 2006) about 1 dex less than that from X-rays (Robrade & Schmitt 2006)
 - larger N(H I) than TW Hya
 - Additional uncertainties
 - No measurement of H₂ absorption
 - Based on low-resolution FUV spectrum

Absorption of coronal EUV photons

- H I Ly-α emission excites H₂ in disk around TW Hya
- Reconstructed Ly-α profile shows central blueshifted dip
 - N(H I)<18.7
 - Blueshifted by 70 km/s in rest frame of H₂
- Possible absorption by N(H I) in wind
 - More attenuation for stars with higher mass accretion rates?

Herczeg et al. (2004)

FUV photoevaporation of disk at 30 AU

- Total FUV emission
 - 1230-1700 A emission depends on accretion rate
 - Includes many strong lines, H₂, and excess FUV continuum
 - H I Ly-α 1215.7 may be 75-90% of FUV flux for some stars (Herczeg et al. 2004)

- FUV from central star
 - Median IS field for 1 Myr old star is 900 G₀ (Adams et al. 2004)
 - Much smaller for field CTTSs
 - Weak for low-mass stars

Evaluating Photoevaporation Models

- EUV emission may not reach the disk surface
 - Soft X-ray emission smothered by accretion?
 - Reduces photoevaporation rate in Alexander et al. models
 - Supports alternate explanations (e.g., Najita et al. 2007) for transition disks
- Strong FUV emission from accretion and winds
 - May cause substantial photoevaporation at >30 AU
 - Problematic for low-mass T Tauri stars, older CTTSs?
- [Ne II], FUV H₂ emission: constrain disk irradiation
 [Ne II]: either X-ray or EUV ionization
 - H_2 : pumped by Ly- α , sensitive to intervening H I