Weak-lined T Tauri stars (WTTS) are of special interest for the study of magnetic activity in the early stages of a star. Low-mass pre-main sequence stars (PMS) rotate slowly during the early stages of their evolution and spin up as they contract to the main sequence (e.g., Stauffer & Hartmann 1986; Bouvier et al. 1997ab). WTTS are, therefore, at a crucial stage of the early evolution of young stars: magnetic activity and intrinsic X-ray emission are expected to be the strongest during that stage. The lack of significant accretion in WTTS makes them the best-suited objects to magnetic activity in PMS stars, and Tsuboi et al. 1998), and X-ray flares with temperatures of a few keV are frequently seen (e.g., Tsuboi et al. 1998; Stelzer & Scalo 2007).

WTTS show strong X-ray and non-thermal radio emissions (e.g., Feigelson & Montmerle 1999). Compared to ZAMS stars, their X-ray luminosities are very high \((10^{28.5} - 10^{31} \text{ erg s}^{-1})\), but they typically show \(L_X/L_{bol} \approx 10^{-4}\), a dex below the saturation level in late-type stars. WTTS display very high coronal temperatures (e.g., Skinner et al. 1997; Tsuboi et al. 1998), and X-ray flares with temperatures of a few keV are frequently seen (e.g., Tsuboi et al. 1998; Stelzer et al. 2000). Grating observations of PMS stars between the early stages of their evolution and spin up as they contract to the central parts of the star forming region. In addition, they found that all of the PMS stars near the OB stars are devoid of strong Hα emission, indicating an absence of accretion disks, possibly due to photo-evaporation by the OB stars and perhaps the supernova event. Indeed, HDE 245059 does not show evidence for accretion: its Hα emission is weak with narrow and symmetric profile. Strong Li \(\lambda 6707\) absorption indicates, however, a young age (Skinner et al. 1991; Alcalá et al. 1996; Padgett 1996; Li & Hu 1998; Alcalá et al. 2000). Furthermore, a \(3\sigma\) upper limit in the mm range \(< 27\) mJy at 27.2 GHz \((1100\) µm\)) sets an upper limit of 0.32 \(M_\odot\) to the mass of a possible disk (Skinner et al. 1991).

In the X-ray regime, HDE 245059 is among the brightest WTTS: its X-ray luminosity (ST85; Alcalá et al. 2000) is about a percent of its optical luminosity \((log L_X/L_V = -2.20; ST85)\). HDE 245059 also showed some flare activity (Alcalá et al. 1996). ST85 report no photons above 2.5 keV in Einstein IPC and a temperature in the range \(log T \sim 6.1 - 6.7\). Archival ROSAT and ASCA spectra also indicate a surprisingly cool plasma temperature of \(6 - 8\) MK for a (double) WTTS. Therefore, we have obtained the Chandra High-Energy Transmission Grating Spectrometer (HETGS) X-ray spectrum of HDE 245059 to study its soft spectrum.

The HETGS consists of two sets of gratings, the MEG and HEG, with the ACIS-S CCDs at the focal plane. The MEG covers \(2.5 - 31\) \(\AA\) with a resolution of \(\Delta \lambda = 0.023\) \(\AA\) FWHM, and the HEG covers \(1.2 - 15\) \(\AA\) with a resolution of \(\Delta \lambda = 0.012\) \(\AA\) FWHM. Observations were performed at three different epochs: 12/30/2005, 01/07/2006 and 01/13/2006 with a total exposure time of 93 ks. The first two observations were done with a roll angle of 308.5deg and the last observation with 294.8deg. Figure 1 shows the ACIS images of the binary for the three different epochs after applying subpixel event position correction. We detected both components of the binary in X-rays in the zero order images and, despite their close separation, in the grating spectra. The zeroth order light curves indicate that both components showed X-ray variability. In particular we observed a flaring event from the weaker southern component during the first epoch observation (Figure 2). We reduced the data from level 1 event file using standard Chandra data reduction procedures. We additionally used the subpixel event repositionary algorithm (See Li et al. 2003, 2004) for the zeroth order images only to improve the spatial resolution. For the grating spectra, since the binary is slightly separated, we...
opted for a zero for the wavelength scale to be in the middle of the binary. In this way the lines from each binary component are on each side of the rest wavelength of the line. We obtained ±1 orders for each grating arm, and summed the positive and negative order arms to increase signal-to-noise. The roll angles of the satellite during the observations were such that the MEG dispersion axis was almost completely aligned with the position angle of the binary (almost perfect alignment for the last observation). This orientation allowed us to separate maximally the line spectra of each star in wavelength space.

A preliminary analysis of the spectra indicates that the grating spectra of both components are very similar. They show a combination of cool and hot plasma, confirmed by the presence of several iron lines from Fe XVII to Fe XXV as is shown in Figure 3. The strongest line is Ne X Lyα, at 12.13Å, the Fe lines (in particular Fe XVII at 15 and 17 Å) had much lower fluxes, a strong evidence of a high Ne/Fe ratio suggesting an inverse FIP effect. The high continuum due to bremsstrahlung is visible at short wavelengths, and is consistent with hot plasma as detected by the Fe lines of high ionization states (XXI-XXIV). The Ne IX lines, formed typically in a cool plasma, are also well-detected, and show no evidence for high density ($>10^{12}$ cm$^{-3}$), since it has a strong forbidden line. The O VII lines are not detected probably due to interstellar absorption.

We performed a preliminary fit of the average grating spectrum in XSPEC using a 2-temperature plasma model with APEC (Astrophysical Plasma Emission Code) resulting in best fitting temperatures of 0.6 and 1.6 keV, a total X-ray luminosity of $L_X \sim 9 \times 10^{31}$ erg s$^{-1}$ and an upper limit for $N_H < 3.6 \times 10^{19}$. The abundances relative to solar photospheric values (Grevesse & Sauval 1998) are: O= 0.47, Ne= 0.72, Mg= 0.20, Al= 0.20, Si= 0.21, S= 0.12, Ar= 0.85, Ca= 1.03, Fe= 0.23.

Our preliminary analysis clearly detected both components of the HDE 245059 binary. We will continue our analysis of the Chandra data of HDE 245059 and determine the spectral properties of the binary.

Acknowledgements
M. Audard, C. Baldovin Saavedra and M. Güdel acknowledge support from Swiss National Science Foundation (SNSF) grants (PP002-110504, 20-58827 and 20-66875.01). Finally, M. Audard received support from Chandra award SAOG-6012X.

References
Lammer, H. et al. 2006, Space Science Reviews, 122, 189
Smith, D. S & Scalo, J. 2007, P&SS, 55, 517S

Figure 1: Chandra ACIS images of the HDE 245059 binary for the three different epochs. Subpixel event position corrections were applied.

Figure 2: Zeroth order light curve of the first epoch showing in red the northern component, in blue the southern component and in black the total emission from the binary.

Figure 3: HETGS average spectrum of the binary HDE 245059 for HEG (red) and MEG (black) grating arms. Bright emission lines are labeled.